
Journal of Analysis and Applications
Vol. 21 (2023), No.2, pp.89-99
ISSN: 0972-5954
© SAS International Publications

URL : www.sasip.net

Some properties of Fibonacci-sigmoid

numbers and polynomials matrix
M.S. Kim

Abstract. In this paper, we introduce the Fibonacci-sigmoid poly-
nomials Sn,F (x) and the Fibonacci-sigmoid matrix Sn,F (x, F ). Also,
examples of the inverse of the Fibonacci-sigmoid matrix are pre-
sented. We factorize the following matrix by the Fibonacci matrix.
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1. Introduction

Many mathematicians have recently studied various matrices for dif-

ferent types of polynomials and sequences. For instance, Pascal’s matrices

were studied in depth by Gregory S. Call and Daniel J. Velleman (see [2],

[10]).

In addition, Fibonacci-Pascal matrices and the inverse of these matri-

ces were studied and organized (see [4], [9]). Furthermore, other matrices

such as Bernoulli and Euler matrices were studied extensively as well.

In this study, we focus mainly on the matrices which contain entries

regarding Fibonacci-sigmoid polynomials. In order to do so, we first de-

fine a basic exponential function which includes the concept of Fibonacci

numbers.



90 M.S. Kim

Definition 1.1 [5]. The Fibonacci exponential function etF is defined as

etF =

∞∑
n=0

tn

Fn!
.

Definition 1.2 [5], [8]. The Fibonacci sequence {Fn}n≥0 is defined by

Fn =

{
Fn+2 = Fn+1 + Fn,
F0 = 0, F1 = 1.

Definition 1.3 [5], [8]. For 1 ≤ n ≤ m, the Fibonacci coefficients are

defined by (
m

n

)
F

=
Fm!

Fm−n!Fn!
,

where Fm! = FmFm−1Fm−2 · · ·F1, F0! = 1.

We note

(
m

0

)
F

= 1 and

(
m

n

)
F

= 0 for m < n.

Definition 1.4 [1], [3], [7]. The sigmoid numbers and polynomials are

defined by

∞∑
n=0

Sn
tn

n!
=

1

e−t + 1
,

∞∑
n=0

Sn(x)
tn

n!
=

1

e−t + 1
etx,

respectively.

Hence, we introduced the basic definition of the Fibonacci sequence

and the Fibonomial coefficients. The exponential function which includes

Fibonacci numbers were also established.

Furthermore, in order to instigate a relation between Fibonacci se-

quence and the Pascal triangle, the Fibonacci-Pascal matrix and its’ inverse

were defined. Finally, the sigmoid numbers and polynomials expressed via

the generating function was shown.

The paper is outlined as follows:
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In Section 2, we define the Fibonacci-sigmoid polynomials and num-

bers to show their relation. In Section 3, we introduce the Fibonacci-

sigmoid polynomials matrix and calculate an example of the matrix. Then,

we check if the additivity property holds for the matrix.

We also calculate several of the inverse matrices. Finally, the Fibonacci-

sigmoid polynomials matrices can be factorized by the Fibonacci matrix by

defining a new matrix.

2. Some properties for Fibonacci-sigmoid num-
bers and polynomials

In this section, we define new Fibonacci-sigmoid polynomials and de-

rive properties of these numbers and polynomials. We also find several

symmetric identities for Fibonacci-sigmoid polynomials.

Definition 2.1. Let n be a non-negative integer. Then, we define Fibonacci

sigmoid polynomials as

∞∑
n=0

Sn,F (x)
tn

Fn!
=

1

e−tF + 1
etxF .

For x = 0 in Definition 2.1, we note

∞∑
n=0

Sn,F
tn

Fn!
=

1

e−t + 1
.

where we call Sn,F the Fibonacci sigmoid numbers.

We have a relation Sn,F (x) = En,F (−x), where En,F (x) is the Fi-

bonacchi Euler polynomials (see [6]).

Theorem 2.2. Let k be a non-negative integer. Then, we have

Sn,F (x) =

n∑
k=0

(
n

k

)
F

xkSn−k,F .



92 M.S. Kim

Proof. Using Fibonacci-sigmoid numbers in the generating function of

Fibonacci- sigmoid polynomials, we have

∞∑
n=0

Sn,F (x)
tn

Fn!

=
1

e−tF + 1
etxF

=

∞∑
n=0

Sn,F
tn

Fn!

∞∑
n=0

xn
tn

Fn!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
F

xkSn−k,F

)
tn

Fn!
. (1)

Comparing the coefficients of the both-sides in Equation (1), we com-

plete the proof of Theorem 2.1.

Theorem 2.3. Let x, y ∈ C. Then, the following equation

Sn,F (x+ y) =

n∑
k=0

(
n

k

)
F

ykSn−k,F (x)

holds.

Proof. Replacing x + y instead of x in the generating function of the

Fibonacci- sigmoid polynomials, we have

∞∑
n=0

Sn,F (x+ y)
tn

Fn!
=

1

e−tF + 1
e
t(x+y)
F . (2)

Using the Definition 2.1 in the right-hand side of Equation (2), we

obtain

∞∑
n=0

Sn,F (x+ y)
tn

Fn!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
F

Sn−k(x)yk

)
tn

Fn!
, (3)

which is the required result using comparison of coefficients.
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Corollary 2.4. Consider y = 1 in Theorem 2.3. Then, we have the com-

plement property as

Sn,F (1 + x) =

n∑
k=0

(
n

k

)
F

Sn−k,F (x).

Theorem 2.5. Let α, β 6= 0 and α, β be non-negative integers. Then, we

derive
n∑
k=0

αn−kβkSn−k(α−1x)Sk(β−1y)

=

n∑
k=0

βn−kαkSn−k(β−1x)(α−1y).

Proof. Suppose A is defined as the following form:

A :=
1

(e−αtF + 1)(e−βtF + 1)
e
t(x+y)
F . (4)

Applying the generating function of Fibonacci-sigmoid polynomials in Equa-

tion (4), we obtain

A :=

∞∑
n=0

Sn(α−1x)
(αt)n

Fn!

∞∑
n=0

Sn(β−1y)
(βt)n

Fn!

=

∞∑
n=0

(
n∑
k=0

αn−kβkSn−k(α−1x;u)Sk(β−1y;u)

)
tn

Fn!
, (5)

and

A :=
1

e−βtF + 1
etxF

1

e−αtF + 1
etyF

=

∞∑
n=0

Sn(β−1x)
(βt)n

Fn!

∞∑
n=0

Sn(α−1y)
(αt)n

Fn!

=

∞∑
n=0

(
n∑
k=0

βn−kαkSn−k(β−1x)Sk(α−1y)

)
tn

Fn!
. (6)

From Equations (5) and (6), we obtain the basic symmetric relation

within the Fibonacci-Sigmoid polynomials and finish the proof of Theorem

2.5.
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Corollary 2.6. For α = 1 in Theorem 2.5, we have

n∑
k=0

βkSn−k(x)Sk(β−1y)

=

n∑
k=0

βn−kSn−k(β−1x)Sk(y).

Corollary 2.7. Let x = 0 in Theorem 2.5. Then, we have another sym-

metric property as

n∑
k=0

αn−kβkSn−kSk(β−1y)

=

n∑
k=0

βn−kαkSn−k(α−1y).

Theorem 2.8. Let k, n be non-negative integers. Then, we find

n∑
k=0

(
n

k

)
F

(−1)n−kSk,F + Sn,F :=

{
1, if n = 0,
0, if n > 0.

Proof. We suppose e−tF 6= −1 in the generating function of the Fibonacci-

sigmoid numbers. From the generating function of these numbers and eF ,

we find

∞∑
n=0

Sn
tn

Fn!

( ∞∑
n=0

(−1)n
tn

Fn!
+ 1

)
= 1. (7)

From Equation (7), we get

∞∑
n=0

(
n∑
k=0

(
n

k

)
F

(−1)n−kSk + Sn

)
tn

Fn!
= 1. (8)

Using Equation (8), we obtain the desired result.

Corollary 2.9. Using the similar method of proof from Theorem 2.8, we

hold
n∑
k=0

(
n

k

)
F

(−1)n−kSk,F (x) + Sn,F (x) = xn.
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3. Fibonacci-sigmoid polynomials matrix

This section contains the results regarding the matrices of the Fibonacci-

sigmoid numbers and polynomials.

We begin by defining the matrices of the Fibonacci-sigmoid polynomi-

als and exhibit an example of the matrix. Furthermore, additivity property

and its’ generalized formula is shown for the Fibonacci-sigmoid polynomials

matrix.

Finally, we define the inverse matrix of the Fibonacci-sigmoid polyno-

mials matrix and give several examples of the matrix..

Definition 3.1. Let Sn,F (x) be the n− 1th Fibonacci-sigmoid polynomial.

The (n+ 1)× (n+ 1) Fibonacci-sigmoid polynomials matrix is

Sn,F (x, F ) = [sij(x, F )] for i, j = 1, 2, ..., n

is defined by

sij(x, F ) =


(
i

j

)
F

Si−j,F (x), if i ≥ j,

0, if otherwise.

We note the Fibonacci-sigmoid number matrix for x = 0 as Sn(0, F ) =

Sn(F ).

Example 3.2. Consider n = 3 for the Fibonacci-sigmoid polynomials ma-

trix. We find

S3(x, F ) =


S0,F (x) 0 0 0
S1,F (x) S0,F (x) 0 0
S2,F (x) S1,F (x) S0,F (x) 0
S3,F (x) 2S2,F (x) 2S1,F (x) S0,F (x)



=


1

2
0 0 0

1

2
x +

1

4

1

2
0 0

1

2
x
2 −

x

4
−

3

8

1

2
x +

1

4

1

2
0

1

2
x
3

+
1

2
x
2 −

3

8
x

−
5

8
2

( 1

2
x
2 −

x

4
−

3

8

)
2

( 1

2
x +

1

4

) 1

2

 .
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Theorem 3.3. Additivity property regarding variables x and y hold for

Sn(x, F ) as follows:

Sn(x+ y, F ) = Sn(x, F )Sn(y, F ) = Sn(y, F )Sn(x, F ).

Proof. For i > j, using the previous definition, we obtain

sij(x+ y, F ) =

(
i

j

)
F

Si−j,F (x+ y)

=

i−j∑
k=0

(
i

j

)
F

(
i− j
k

)
F

Si−j−k,F (x)Sk,F (y). (9)

For k ≥ j, the above equation (9) changes as follows:

sij(x+ y, F ) =

i∑
k=j

(
i

j

)
F

(
i− j
k − j

)
F

Si−k,F (x)Sk−j,F (y)

= sij(x, F )sij(y, F ).

Replacing x and y, it is proved.

Corollary 3.4. Generalizing Theorem 3.3, the following holds.

Let (x1, x2, ..., xk) ∈ Rk. The matrices Sn(xj) for j = 0, 1, ..., k satisfies the

following product formula:

Sn(x1 + x2 + ...+ xk, F ) = Sn(x1, F )Sn(x2, F )...Sn(xk, F ).

Theorem 3.5. Sn,F (x, F ) satisfies the following formulae:

Sn,F (x+ y, F )

= Pn[x, F ]Sn,F (y, F )

= Pn[y, F ]Sn,F (x, F ).

If y = 0, Sn,F (x, F ) = Pn,F [x, F ]Sn,F (F ) holds as well.

Proof. For i ≥ j, we have
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sn(x+ y, F ) =

(
i

j

)
F

Si−j,F (x+ y)

=

(
i

j

)
F

i−j∑
k=0

(
i− j
k

)
F

Sk,F (y)xi−j−k

=

i∑
k=j

(
i

j

)
F

(
i− j
k − j

)
F

Sk−j,F (y)xi−k

=

i∑
k=j

(
i

k

)
F

xi−k
(
k

j

)
F

Sk−j,F (y)

= pn(x; i, k)sk,j(y, F ).

Hence, it is proved.

Example 3.6. Let Dn,F (x) ∈ Mn+1(R) be the inverse matrix of the

Fibonacci-sigmoid polynomials matrix Sn,F (x). Then, several inverse

Fibonacci-sigmoid polynomials matrices are as follows.

(i) If n = 1, by calculating the determinant of Sn,F (x), we can easily

find

D1,F (F ) =

[
2 0

−2x− 1 2

]
.

(ii) If n = 2, by using the Gauss–Jordan elimination, we can find the

inverse matrix

D2,F (F ) =

 2 0 0
−2x− 1 2 0
3x+ 2 −2x− 1 2

 .
(iii) If n = 3, by using the same method, we find

D3,F (x) =


2 0 0 0

−2x+ 1 2 0 0
3x+ 2 −2x− 1 2 0

2x3 − 8x2 − 25

2
x− 2 6x+ 4 −4x− 2 2

 .
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4. Conclusion

Based on the given results in Fibonacci-Euler polynomials matrix (see

[6]), we defined the Fibonacci-sigmoid polynomials matrix and organized

several properties related to this matrix. It would be useful later on to

expand the sigmoid polynomial to other polynomials and define a more

generalized matrix in order to find more common properties.

Acknowledgement. The author would like to express her sincere grat-

itude to the referees for their valuable suggestions and comments which
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